
Practical Frida
A practical introduction to the Frida toolkit

CyberChess, LV

whoami

Fernando Diaz
Senior Software Engineer

VirusTotal

● Sandbox engine developer.
● Malware research focused on banking trojans.
● Teaching Frida at University of Malaga’s MSc.
● Author of Frida Handbook → https://learnfrida.info
● Contact

○ twitter.com/entdark_ answer within hours usually
○ fdiaz@virustotal.com

https://learnfrida.info
http://twitter.com/entdark

What is binary instrumentation?

Binary instrumentation consists on injecting instrumentation code which is
transparent to the target app, so that we can obtain behavioural information during
its execution.

it is not only limited to observing the execution, but also modifying the execution
flow if needed. Some examples are:

● Assembly instructions executed.
● Function arguments and return values
● Pointer data

What’s Frida?

Frida is a binary instrumentation toolkit. It is some sort of Greasemonkey for native
application. A toolkit that lets you inject snippets of Javascript or your own library
into native apps on multiple systems.

For us, that means:

● High portability
● Javascript (fast development cycle)

Instrumentation frameworks

● Intel PIN
● DynamoRIO
● Frida
● IDA's APPCALL (but this is somewhat different)

The advantages of Frida

- Ability to use Javascript or Typescript to write instrumentation code.
- It possible to write instrumentation using C libraries

- Huge cross-platform support: Windows, Linux, MacOS, Android, iOS.
- CLI toolkit: Listing processes, tracing processes, interactive command line…
- Community: Examples, documentation and examples
- It is free & open-source.

Learning Frida

Frida's documentation is good enough and has improved over the years. At the
time I thought the website didn't present enough practical examples and noticed
many people always asking the same questions;.

As a result, I wrote learnfrida.info - A free, web book to learn to use Frida from
scratch.

https://learnfrida.info

What do we need to use Frida?

1. Install Frida
a. $ pip install frida frida-tools

2. Auxiliary tools:
a. An APK decompiler:

i. JADX
ii. JEB (requires paid license)

b. A disassembler
i. Radare2
ii. IDA
iii. Ghidra

3. A target application

Frida’s core API

Out of all the functionality the Frida API gives us access to, the most important
ones are:

● Interceptor: Hooking of functions and classes
● Stalker: A code-tracing engine.
● Java: Access to the Java Runtime.
● ObjC: Access to the Objective-C runtime.

frida.re/docs/javascript-api

https://frida.re/docs/javascript-api/

Crackme

Crackme

Let's play with real malware

About the sample

● Coper, an Android banking trojan
● Multi-stage installation:

○ Loads a hidden DEX file from the resources folder
○ Loaded DEX file loads a dynamic library that decrypts the real DEX file.
○ DEX file is temporarily stored in cache.

● Communicates with C2 using a rotating list of domains
● Data is sent as a JSON Object

Target file:
https://www.virustotal.com/gui/file/7461c3dccd52b577d3f6be9e9c0c1d61a159e7b
24554e6407f52a2f334469d5b

https://www.virustotal.com/gui/file/7461c3dccd52b577d3f6be9e9c0c1d61a159e7b24554e6407f52a2f334469d5b
https://www.virustotal.com/gui/file/7461c3dccd52b577d3f6be9e9c0c1d61a159e7b24554e6407f52a2f334469d5b

The objectives

● Instrument the complete workflow:
○ Dynamic Library load → Dynamic DEX load → Instrument functions of interest

● Understand where the decryption comes from
● Intercept communications with the C2
● Intercept interesting data (decrypted strings, settings)

APK is hiding something

com.eastcause0.p019b is not in the decompilation

svzpmg

.json that doesn’t resemble a JSON file…

Looking at behavioural reports

From behavioural reports it looks like the files we have spotted do indeed get
dropped into the filesystem.

Let’s hook fopen to see the source of the call.

Instrumenting fOpen

Interceptor.attach(Module.getExportByName(null, "fopen"), {

 onEnter(args) {

 console.log(args[0].readUtf8String());

 console.warn(Thread.backtrace(this.context, Backtracer.ACCURATE)

 .map(DebugSymbol.fromAddress).join('\n') + '\n');

 }

});

svzpmg is written from libwIlf.so!0xc2e9

/data/user/0/com.eastcause0/cache/svzpmg

0x77b15d9332e9 libwIlf.so!0xc2e9

Payload to disk

This function receives the path and
the decrypted payload and writes it to
disk.

Decryption key

The decrypted DEX file

Strings obfuscated, but we can deal
with that later

The problem

From this point it is now possible to instrument whatever we want. Having the
unpacked file makes it simpler. However…

Because this DEX file is loaded in runtime, classes are not present on startup. And
any attempt too instrument them directly will lead to an error, or a crash.

Our next goal
Interceptor.attach(Module.getExportByName(null, "android_dlopen_ext"), {
 onEnter(args) {
 this.libname = args[0].readUtf8String();
 },
 onLeave(retval) {
 if (this.libname.includes("libwIlf.so")) {
 const fOpenListener = Interceptor.attach(Module.getExportByName(null, "fopen"), {
 onEnter(args) {
 this.filename = args[0].readUtf8String();
 },
 onLeave(retval) {
 if (this.filename.includes("cache")) {
 console.log(this.filename);
 fOpenListener.detach();
 setTimeout(() => {
 instrumentCoper();
 }, 250);
 }
 }
 })
 }
 }
})

Intercepting network communications

Everytime information is sent to the C2, it is stored in a JSON object array and
sent via HTTP(S). A function receives both the URL and the JSONObject. Let’s
inspect it ;)

Instrumenting the C2 data comms method

let fddoThisClazz = Java.use("fddo.this");

fddoThisClazz.goto.overload("java.lang.String",

"org.json.JSONObject").implementation = function(c2, payload) {

 console.warn(`Endpoint: ${c2}\npayload: ${payload}`)

 const retval = this.goto(c2, payload);

 return retval;

};

C2 communications intercepted!

Rotating endpoints on each request, sending all the device data

Reading stored data

This malware uses the SharedPreferences class to read and store data.
Whenever it is ready to use any of this data, the .getString() method will be
called.

Let’s instrument the .getString() method to see what data is being accessed.

SharedPreferences .

const sharedPrefClazz = Java.use("android.app.SharedPreferencesImpl");

sharedPrefClazz.getString.overload('java.lang.String',

'java.lang.String').implementation = function(value, defaultValue) {

 const returnString = this.getString(value, defaultValue);

 console.warn(`Key=${value}\n\tContents=${returnString}`);

 return returnString;

};

Results of monitoring shared preferences

One of the keys contains the HTML used to device uses into giving the necessary
permissions! It is posible to monitor other keys to extract the targeted applications.

Strings decryption

let fddoBreakClazz = Java.use("fddo.break");

fddoBreakClazz.fddo.overload('java.lang.String').implementation =

function(encrypted_str) {

 const retval = this.fddo(encrypted_str);

 console.log(`${encrypted_str}=${retval}`);

 return retval

}

Questions?

Conclusions

● Frida enables us to instrument applications very quickly.
● During this presentation, it was possible to instrument an application in

minutes.
● Instrumentation mixes native code (dynamic library) as well as Java code.

