
cert.pl

Slajd tytułowy bez zdjęcia. Można użyć również
jako slajd kończący z podziękowaniami.

DRAKVUF Sandbox
Dynamic malware analysis
from the hypervisor point of view

Paweł Srokosz
CyberChess 2023
#CyberShock session

Agenda

➔ 101: Automated malware unpacking 🎁
➔ Hypervisor-level sandboxing: is it making a

difference?🤔
➔ DRAKVUF Sandbox: our contribution to the

DRAKVUF project! 🚀

Introduction
to automated malware unpacking

Paracetamol 500mg
(just in different

packaging)

Modern malware also have layers

➔ Malware is usually wrapped with additional layers that also
helps in “ingestion”:
◆ Usually highly obfuscated and difficult for static

analysis;
◆ Bamboozling AV solutions, checking environment,

providing additional randomness;
◆ Variety of stuff that is usually not that interesting,

if we want to identify the actual, final payload;

Protector example: DotRunpeX

➔ .NET Protector
➔ Obfuscated by KoiVM virtualizer
➔ Uses LOLDrivers to bypass AV (procexp.sys, zemana.sys)
➔ Uses Process Hollowing for injection
➔ Older versions remapped ntdll.dll to bypass hooking

Source: https://research.checkpoint.com/2023/dotrunpex-demystifying-new-virtualized-net-injector-used-in-the-wild/

The idea of dynamic malware unpacking
➔ Let it execute and unpack itself

The idea of dynamic malware unpacking
➔ Let it execute and unpack itself

DotRunpeX

The idea of dynamic malware unpacking
➔ Let it execute and unpack itself
➔ Trace the execution and make memory dumps of next

layers until we get an unpacked sample

Agent Tesla

DotRunpeX

The idea of dynamic malware unpacking
➔ Let it execute and unpack itself
➔ Trace the execution and make memory dumps of next

layers until we get an unpacked sample
➔ Analyze dumps statically (using YARA rules, dedicated

scripts etc.)
Agent Tesla

The idea of dynamic malware unpacking
But how to dump these stages?

The idea of dynamic malware unpacking
But how to dump these stages?
➔ Randomly make a dump of whole process memory?

Not very reliable and we get lots of useless data to
process

The idea of dynamic malware unpacking
But how to dump these stages?
➔ Randomly make a dump of whole process memory?

Not very reliable and we get lots of useless data to
process

➔ Scan memory with YARA rules and dump matching
things?
Very often we need generic approach to dump the
“unknown”

The idea of dynamic malware unpacking
But how to dump these stages?
➔ Randomly make a dump of whole process memory?

Not very reliable and we get lots of useless data to
process

➔ Scan memory with YARA rules and dump matching
things?
Very often we need generic approach to dump the
“unknown”

➔ Dump only “interesting” memory e.g. with RWX rights?

The idea of dynamic malware unpacking
But how to dump these stages?
➔ Randomly make a dump of whole process memory?

Not very reliable and we get lots of useless data to
process

➔ Scan memory with YARA rules and dump matching
things?
Very often we need generic approach to dump the
“unknown”

➔ Dump only “interesting” memory e.g. with RWX rights?
Actually that works best!

The idea of dynamic malware unpacking

The idea of dynamic malware unpacking
What is “interesting” memory:
➔ Code injected into process memory

NtWriteProcessMemory

➔ New binary mapped on process memory
NtProtectVirtualMemory on memory with contents starting with “MZ”

➔ Injecting new threads or hijacking existing threads in
another process
NtCreateRemoteThreadEx, NtSetInformationThread

The idea of dynamic malware unpacking

The idea of dynamic malware unpacking

Hypervisor-level
sandboxing
using DRAKVUF

VM

Agent-based sandbox

Host

 agent.exe

Analysis manager

Userland (Ring 3)

VM

Agent-based sandbox

Host

 agent.exe

Analysis manager

malware.exe

Userland (Ring 3)

VM

Agent-based sandbox

Host

 agent.exe

Analysis manager

malware.exe

Userland (Ring 3)

VM

Agent-based sandbox

Host

 agent.exe

Analysis manager

malware.exe

Userland (Ring 3)

Protector example: DotRunpeX

➔ .NET Protector
➔ Obfuscated by KoiVM virtualizer
➔ Uses LOLDrivers to bypass AV (procexp.sys, zemana.sys)
➔ Uses Process Hollowing for injection
➔ Older versions remapped ntdll.dll to bypass hooking

VM

Agent-based sandbox

Host

 agent.exe

Analysis manager

malware.exe

Userland (Ring 3)

VM

Agent-based sandbox

Host

 agent.exe

Analysis manager

malware.exe

Userland (Ring 3)

VM

Agent-based sandbox

Host

Analysis manager

malware.exe

Userland (Ring 3)

 agent.sys

VM

Agent-based sandbox

Host

Analysis manager

malware.exe

Userland (Ring 3)

 agent.sys

PatchGuard
Binary signing

Protector example: DotRunpeX

➔ .NET Protector
➔ Obfuscated by KoiVM virtualizer
➔ Uses LOLDrivers to bypass AV (procexp.sys, zemana.sys)
➔ Uses Process Hollowing for injection
➔ Older versions remapped ntdll.dll to bypass hooking

VM

Agent-based sandbox

Host

Analysis manager

Userland (Ring 3)

 agent.sys zemana.sys

malware.exe

VM

Agent-based sandbox

Host

Analysis manager

Userland (Ring 3)

 agent.sys zemana.sys

malware.exe

VM

Agentless sandbox

Host

Analysis manager

Userland (Ring 3)

Execution
monitor

malware.exe

Hypervisors are made for malware tracing!

➔ By design, they need to emulate/mock things to make
virtualization transparent for the guest

➔ Hardware virtualization is a security boundary
(very often described as ring -1)

➔ We can trace whole operating system without relying on
operating system mechanisms

VT-x: VM exits

VT-x: VM exits

VT-x: VM exits

VT-x: VM exits

Context
switching

Single-stepping
in VM

VT-x: VM exits and interrupts

VM exits can be also caused by:
➔ Exception interrupts (including page faults, protection

faults or classic int3 software breakpoint)
➔ CPUID, RDRAND…

VT-x: Extended Page Tables

Virtual memory
pages

Physical memory
frames

VT-x: Extended Page Tables

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

SLAT (Second-Level Address Translation)

VT-x: Extended Page Tables - altp2m

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

R - X

VT-x: Extended Page Tables - altp2m

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

R - X R - X

VT-x: Extended Page Tables - altp2m

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

R - XR - X

VT-x: Extended Page Tables - altp2m

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

R - XR - -

VT-x: Extended Page Tables - altp2m

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

R - XR - -

When CPU tries to execute something
from page, we get a #GP (and VMEXIT!)

VT-x: Extended Page Tables - altp2m

Virtual memory
pages

Guest
“physical memory

frames”

Host
physical memory

pages

R - X

R - X

Semantic gap

➔ Where is kernel located in guest physical memory?
➔ Which page table belongs to which process?
➔ What is actually loaded into memory and what is paged

out?

LibVMI (Virtual Machine Introspection)

Source: libvmi.com

LibVMI (Virtual Machine Introspection)

Source: libvmi.com

Source: drakvuf.com

Crossing the semantic gap

➔ Knowledge about specific offsets is based on PDB symbols
from Microsoft Symbol Server

➔ They’re parsed into digestible JSON form using popular
forensic framework: volatility3

How it actually works?
Let’s try with a demo🙏

DRAKVUF Sandbox - making an actual sandbox
solution

DRAKVUF Sandbox - making an actual sandbox
solution

DRAKVUF Sandbox - making an actual sandbox
solution

DRAKVUF Sandbox - making an actual sandbox
solution

DRAKVUF Sandbox - making an actual sandbox
solution

Kudos!

➔ Tamas Lengyel: author of DRAKVUF engine
➔ CERT.pl DRAKVUF and DRAKVUF sandbox team for making

enormous amount of work and research on both projects!
➔ GSoC 2021 students: Manorit Chawdrhy, Jan Gruber

https://www.youtube.com/watch?v=36SNbTX-RNE
https://icedev.pl/static/confidence2022.pdf

https://www.youtube.com/watch?v=36SNbTX-RNE
https://icedev.pl/static/confidence2022.pdf

Slajd tytułowy bez zdjęcia. Można użyć również
jako slajd kończący z podziękowaniami.

cert.pl/en/contact
psrok1@cert.pl

@CERT_Polska_en
@_psrok1

Questions?

mailto:psrok1@cert.pl

