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Agenda

➔ 101: Automated malware unpacking 🎁
➔ Hypervisor-level sandboxing: is it making a 

difference?🤔
➔ DRAKVUF Sandbox: our contribution to the 

DRAKVUF project! 🚀



Introduction
to automated malware unpacking





Paracetamol 500mg
(just in different 

packaging)



Modern malware also have layers

➔ Malware is usually wrapped with additional layers that also 
helps in “ingestion”:
◆ Usually highly obfuscated and difficult for static 

analysis;
◆ Bamboozling AV solutions, checking environment, 

providing additional randomness;
◆ Variety of stuff that is usually not that interesting, 

if we want to identify the actual, final payload;



Protector example: DotRunpeX

➔ .NET Protector
➔ Obfuscated by KoiVM virtualizer
➔ Uses LOLDrivers to bypass AV (procexp.sys, zemana.sys)
➔ Uses Process Hollowing for injection
➔ Older versions remapped ntdll.dll to bypass hooking



Source: https://research.checkpoint.com/2023/dotrunpex-demystifying-new-virtualized-net-injector-used-in-the-wild/
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The idea of dynamic malware unpacking
➔ Let it execute and unpack itself
➔ Trace the execution and make memory dumps of next 

layers until we get an unpacked sample
➔ Analyze dumps statically (using YARA rules, dedicated 

scripts etc.)
Agent Tesla
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The idea of dynamic malware unpacking
But how to dump these stages?
➔ Randomly make a dump of whole process memory?

Not very reliable and we get lots of useless data to 
process

➔ Scan memory with YARA rules and dump matching 
things?
Very often we need generic approach to dump the 
“unknown”

➔ Dump only “interesting” memory e.g. with RWX rights?
Actually that works best!
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The idea of dynamic malware unpacking
What is “interesting” memory:
➔ Code injected into process memory

NtWriteProcessMemory

➔ New binary mapped on process memory
NtProtectVirtualMemory on memory with contents starting with “MZ”

➔ Injecting new threads or hijacking existing threads in 
another process
NtCreateRemoteThreadEx, NtSetInformationThread
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Hypervisor-level 
sandboxing
using DRAKVUF
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Binary signing
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VM

Agentless sandbox
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Execution
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malware.exe



Hypervisors are made for malware tracing!

➔ By design, they need to emulate/mock things to make 
virtualization transparent for the guest

➔ Hardware virtualization is a security boundary 
(very often described as ring -1)

➔ We can trace whole operating system without relying on 
operating system mechanisms
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VT-x: VM exits

Context 
switching

Single-stepping
in VM



VT-x: VM exits and interrupts

VM exits can be also caused by:
➔ Exception interrupts (including page faults, protection 

faults or classic int3 software breakpoint)
➔ CPUID, RDRAND…
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When CPU tries to execute something 
from page, we get a #GP (and VMEXIT!)
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Semantic gap

➔ Where is kernel located in guest physical memory?
➔ Which page table belongs to which process?
➔ What is actually loaded into memory and what is paged 

out?
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Source: drakvuf.com



Crossing the semantic gap

➔ Knowledge about specific offsets is based on PDB symbols
from Microsoft Symbol Server

➔ They’re parsed into digestible JSON form using popular 
forensic framework: volatility3



How it actually works?
Let’s try with a demo🙏



DRAKVUF Sandbox - making an actual sandbox 
solution



DRAKVUF Sandbox - making an actual sandbox 
solution



DRAKVUF Sandbox - making an actual sandbox 
solution



DRAKVUF Sandbox - making an actual sandbox 
solution



DRAKVUF Sandbox - making an actual sandbox 
solution



Kudos!

➔ Tamas Lengyel: author of DRAKVUF engine
➔ CERT.pl DRAKVUF and DRAKVUF sandbox team for making 

enormous amount of work and research on both projects!
➔ GSoC 2021 students: Manorit Chawdrhy, Jan Gruber 



https://www.youtube.com/watch?v=36SNbTX-RNE
https://icedev.pl/static/confidence2022.pdf
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